Chains in the Noncrossing Partition Lattice
نویسنده
چکیده
We establish recursions counting various classes of chains in the noncrossing partition lattice of a finite Coxeter group. The recursions specialize a general relation which is proven uniformly (i.e. without appealing to the classification of finite Coxeter groups) using basic facts about noncrossing partitions. We solve these recursions for each finite Coxeter group in the classification. Among other results, we obtain a simpler proof of a known uniform formula for the number of maximal chains of noncrossing partitions and a new uniform formula for the number of edges in the noncrossing partition lattice. All of our results extend to the m-divisible noncrossing partition lattice.
منابع مشابه
Undesired Parking Spaces and Contractible Pieces of the Noncrossing Partition Link
There are two natural simplicial complexes associated to the noncrossing partition lattice: the order complex of the full lattice and the order complex of the lattice with its bounding elements removed. The latter is a complex that we call the noncrossing partition link because it is the link of an edge in the former. The first author and his coauthors conjectured that various collections of si...
متن کاملA Decomposition of Parking Functions by Undesired Spaces
There is a well-known bijection between parking functions of a fixed length and maximal chains of the noncrossing partition lattice which we can use to associate to each set of parking functions a poset whose Hasse diagram is the union of the corresponding maximal chains. We introduce a decomposition of parking functions based on the largest number omitted and prove several theorems about the c...
متن کاملChains in the lattice of noncrossing partitions
The lattice of noncrossing set partitions is known to admit an R-labeling. Under this labeling, maximal chains give rise to permutations. We discuss structural and enumerative properties of the lattice of noncrossing partitions, which pertain to a new permutation statistic, m(a), defined as the number of maximal chains labeled by 0. Miibius inversion results and related facts about the lattice ...
متن کاملNoncrossing partitions and the shard intersection order
We define a new lattice structure (W, ) on the elements of a finite Coxeter group W. This lattice, called the shard intersection order, is weaker than the weak order and has the noncrossing partition lattice NC(W ) as a sublattice. The new construction of NC(W ) yields a new proof that NC(W ) is a lattice. The shard intersection order is graded and its rank generating function is the W -Euleria...
متن کاملThe Toric H-vector of a Cubical Complex in Terms of Noncrossing Partition Statistics
This paper introduces a new and simple statistic on noncrossing partitions that expresses each coordinate of the toric h-vector of a cubical complex, written in the basis of the Adin h-vector entries, as the total weight of all noncrossing partitions. The same model may also be used to obtain a very simple combinatorial interpretation of the contribution of a cubical shelling component to the t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Discrete Math.
دوره 22 شماره
صفحات -
تاریخ انتشار 2008